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The observed motion of a sphere through a 
short, rotating cylinder of fluid 

By T. MAXWORTHY-J- 
Jet  Propulsion Laboratory, California Institute of Technology, 

Pasadena, California 

(Received 19 April 1967 and in revised form 29 September 1967) 

The drag on a sphere has been measured as it moves through a slightly viscous 
fluid contained in a rotating cylinder that is short compared to the length of 
‘Taylor columns’ created by the sphere motion. These results suggest that only 
when inertia effects are very much smaller than both viscous and Coriolis forces 
are the results of Moore & Saffman (1968) approached. Flow field observations 
show qualitative agreement with many of the features described in their paper 
but differ sufficiently to warrant a further, fairly extensive discussion. These 
differences are characterized by a marked fore and aft asymmetry in the shear 
layer and boundary-layer flows for all values of the parameters covered by this 
study. 

Introduction 
When a body moves along the axis of rotation of a long, rapidly spinning 

cylinder of water, large, slowly attenuating disturbances are propagated fore and 
aft to produce columns or ‘slugs’ of almost stagnant fluid. Such phenomena were 
first, rather briefly but elegantly, discussed by Taylor (1923) and have since been 
called ‘Taylor columns ’. Many authors have since contributed to our theoretical 
knowledge of these effects, but no convincing quantitative experimental measure- 
ments have been made. While attempting to perform such experimentsf in a 
long cylinder and at  relatively low rotation rates, the present author found evi- 
dence of a weak interaction between the long fore and aft wakes of a sphere and 
the end waIls of the apparatus. Private communication with Prof. D. FuItz of the 
University of Chicago indicated that in experiments performed there, in short 
cylinders, very large interactions between the ‘Taylor columns’ and the end 
wall were greatly increasing the drag experienced by the sphere. Recent theoreti- 
cal work on this interaction by Moore & Saffman (1968)s has made it necessary 
to extend the range of Fultz’s measurements. These are presented here together 
with the current view on the nature of the flow field created in this very compli- 
cated interaction problem. 

t Present address : University of Southern California, Los Angeles. 
$ To be published. 

Referred to  as M-S in that which follows. 
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Apparatus 
Shown in figure 1 is a short cylinder, 40 em long, 28 em diameter, which can be 

spun rapidly by a feedback-controlled, constant-speed, d.c. electric motor. A 
mechanism to release a buoyant sphere (figure 1 a)  is affixed in the lower end wall, 
and the upper end wall is removable. Two sphere sizes were used, a table-tennis 
ball (1.905 em radius) and a specially fabricated thin-shelled sphere (3.885 em 
radius). Each could be almost completely filled with water, sealed, and their 
buoyancy force, in water, measured by an elementary application of Archimedes’ 
principle. 

One of the spheres was placed in the release mechanism, the upper end plate 
was fixed in place, and the apparatus spun until the water inside was in solid 
body rotation. The sphere was released and its time of flight measured between 
two sets of lines. At very high rotation speeds and low buoyance, the sphere 
wandered off the axis of rotation. The beginning of such behaviour marked the 
limit of usefulness of the experiments, since these runs produced drag coefficients 
somewhat below the general trend of the ‘well-behaved’ case. For some cases 
dye was injected into the flow, through the end walls, and its motion studied. 

Since some difficulty was encountered in injecting dye in a controlled manner, 
a sphere which could be towed along the axis of rotation was mounted through 
the upper plate of the apparatus so that it also rotated with the cylinder (figure 
1 b). This hollow sphere was filled with dye and glued to a hollow S.S. tube a t  the 
open end of which there was a pressure relief valve. The latter could be operated 
while the apparatus was rotating. This rotating tube was attached, through a 
rotating bearing, to a square rod and a towing wire pulled around the drive shaft 
of a 1 rev/min clock motor. Four sphere Reynolds numbers between 3.5 and 28 
could be obtained in this way. Various tests could be performed with this con- 
trollable apparatus. Dye could be injected at  a known location and in small 
amounts in order to observe the streamline character. Direct velocity measure- 
ments could be made using the technique described by Baker (1966). A thin 
platinum wire (0.0005in. dia.) was stretched across the tank and observed from 
two mutually perpendicular directions (see inset on figure 8b ,  plate 4 ) .  The fluid 
was a dilute solution of the indicator Thymol Blue titrated to its end point. When 
the wire was pulsed with 6 V d.c., a proton exchange reaction took place at the 
wire and the solution became locally basic. In  the thin cylindrical region around 
the wire, the indicator turned blue and served to mark a line of particles at  a given 
instant of time. The local flow swept the marked particles away and measured, 
in principle, the local swirl and axial velocities with respect to the rotating 
reference frame. Unfortunately, the swirl velocities were so much larger than the 
axial velocities that no meaningful measurements of the latter could be made 
because of the large distortions of the dye line caused by the former. 

Results and discussion Drag measurements 

The primary results are shown in figures 2 and 3. They are presented in a form 
to ease comparison with the work of M-S discussed in this issue, and the results 
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Release mechanism 

FIGURE 1. (a) Apparatus used to measure the velocity of a freely rising sphere. ( b )  
Apparatus to tow a captive sphere, introducing dye in known locations and measur- 
ing azimuthal velocity profiles. 
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of the present author obtained in a long cylinder; briefly summarized the latter 
show that as T becomes large and for Ro less than 0.1, C, is proportional to Ro-1 
when the small effect of the interaction with the end wall is removed by extra- 
polation. I n  the limit described by M-8, C,R/Tg is 0.819, for the completely 
enclosed geometry, where C, is the drag coefficient, D/&pU2na2; T the Taylor 
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number, Qa2/v; and R the Reynolds number, Ua1v.t Here D is the drag force or 
equivalently the buoyancy force, p the fluid density and v its kinematic vis- 
cosity, Q the rate of the basic solid-body rotation and U and a are the velocity 
and radius of the sphere. In  figure 2 we see that when the interaction with the 
end walls is complete, the drag coefficient increased by one order of magnitude 
above the case of motion in a long cylinder with no end-wall interaction. 

The theoretical considerations of M-S require that the flow be symmetric fore 
and aft, i.e. no non-linear inertial effects, and that all layers be thin compared to 
apparatus dimensions. Figure 3 suggests that this is occurring as RITf becomes 
small. A reasonable extrapolation shows that the theoretical value is approached, 
to within the accuracy of the experiment ( & 29%), for values of R/T& between 
10-4 and 10-3, although the slowly varying nature of the results makes it diffi- 
cult to be certain of the exponent of T for values of R/T* smaller than unity, the 
value at which a transition apparently takes place. It is interesting to rewrite 
this condition in terms of the inertial parameters of the problem to see how really 
minute they must be for inertial effects to be negligible; we get R2 Ro between 
10-12 and 10-9 ! These results tend to confirm the statements of M-S on the limits 
of validity of their solution. Their most restrictive condition on the importance 
of inertial effects comes from order-of-magnitude arguments within the shear 
layers; they require that R/T+ < a/H?[O( 1) in the present case], where H is the 
height of the cylinder. This result agrees substantially with ours unless T A  is 
considerably larger than unity ! For the experiments the largest value of this 
quantity is 1.6 and the results are not accurate enough to tell if this is a significant 
difference. Since the experimental exponent of & was found before the theoretical 
value of 3 was computed, it is retained even though the theoretical exponent gives 
a reduction of the data which is as accurate as that shown in figure 3. The order 
of magnitude is necessarily even smaller in the real case because of the change 
that takes place within these shear layers as they approach the body. They 
become very thin and the velocities within them large, so that inertia forces are 
large there even though they may be small far removed from the body. We must 
eventually require that inertia forces be small everywhere and a correspondingly 
lower R and Ro than the M-S restriction is suggested. There are also inertial 
effects within the forward slug which produce radial flow there, and a further 
difficulty in the nonuniform character of the boundary-layers found behind the 
sphere and at the lower boundary. These will be discussed more fully in the 
following sections. 

Also shown in figure 3 are a few results of sphere drag measured when the upper 
surface, towards which the sphere was moving, was a free surface. For this 
geometry the theoretical value of C,R/T* is 1.405. Because of this surface’s 
inability to support an Ekman layer, the fluid trapped within the Taylor column 
must be mainly, though not completely, removed through the Ekman layer on 

t It is often convenient to use the inverse of the Taylor number, i.e. v/Ra2, sometimes 
called the Ekman number (Ej,  and an inertial measure of the Coriolis force Ulna, the 
Rossby number (Ro). The choice of the parameter used is, as in all such problems, a 
personal one and seems to defy any rational analysis. Thus it is becoming conventional 
for the Ekman layer thickness to be written as O(E&j, yet an ordinary boundary layer has 
thickness O(R-*)! 
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the sphere surface. This results in an increased vorticity external to the layer and 
an increased dissipation in the layer. The resultant drag increase is shown clearly 
in the results, corresponding parametric conditions having around a 35% in- 
crease in C, over the case with both end walls solid. Further work on this phase 
of the investigation is anticipated for the future. In the present paper we will 
only briefly mention a few crude observations of the drag and flow field. 

The flow field Dye studies 

These were used mainly to try to understand the overall character of the flow 
field. What do the meridional streamlines, i.e. mass carrying streamlines, look 
like? Which of the M-S conditions are unrealistic? etc. Visual observation, still 
and time lapse photography were used to reconstruct the flow field. Several 
curious phenomena were noted and will be discussed appropriately. 

The flow field can be conveniently divided into three parts, the interactions 
at upper and lower walls and at  the sphere. Figure 4 shows the meridional flow 
field around the sphere under the conditions of most of the experiments. There 
are quantitative variations from this picture, but in general it qualitatively 
represents the flow under the low R conditions tested. 

Flow ahead of the sphere is relatively uncomplicated. Within the ‘Taylor 
column ’ the fluid is rotating slower than the sphere; this fluid is smoothly sucked 
into a thin Ekman layer and passes around the sphere, with no apparent thick- 
ening a t  the equator, to be ejected in a layer behind the sphere (figure 5, plate 1). 
Since this latter layer is not well behaved and does not resemble the corresponding 
theoretical Ekman solution, it will be discussed in more detail later. Within the 
‘almost-geostrophic ’ forward slug is a small radial flow. A few measurements of 
the radial velocity of this flow show that it scales approximately with RT-$-f, 
which is consistent with the assumption that this flow is of inertial origin. Outside 
of this central region is a jet transporting fluid from the Ekman layer on the upper 
plate to the rear of the sphere. This layer grows thinner with larger internal axial 
and azimuthal velocities as it approaches the sphere (figure 6c ,  plate 2 ) .  It sweeps 
around the equator and suddenly jumps to a larger radius. At low Reynolds 
numbers this seems to be a fairly smooth transition, but at higher Reynolds 
numbers it looks very much like an annular undular jump phenomenon (figure 7 c,  
plate 3) which in rotating fluids has been called a vortex jump (Benjamin 1962). 
One might speculate that as R decreases still further and inertial forces become 
smaller 6han viscous forces, this jump must be smoothed out completely and 
become symmetric about the equator (cf. the behaviour of very viscous, 
free surface flow over an obstacle). Outside of this layer there is evidence of 
another region within which fluid is being recirculated, as shown in figure 4 
and the lower right-hand corner of figure 7 b ,  plate 3. Unfortunately, the precise 
specification of this region is ambiguous because dye from the inner layer does 
not always flow into it and because it suffers an azimuthal instability which 
makes it difficult to see its true nature. Thus the layer tends to break up into a 

meter is much smaller than unity. 
f From the results of M-S one finds that inertial effects are negligible when this para- 
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varying number of long cells spaced around the circumference of the circum- 
scribing cylinder. These cells move out into the outer flow and cause considerable 
disturbance there. Depending on circumstances, there may be between 2 and 6 
of these cells, and at  low T and/or large R they penetrate into the interior regions 
of the flow (figure 8a,  plate 4). 

I 
I 

I 

FIGURE 4. Meridional flow field around the sphere showing the acceleration within the 
shear layers and the anomalous boundary-layer behaviour behind the sphere. 

To recapitulate, the forward ‘Taylor’ region loses fluid in three ways; through 
the Ekman layer on the sphere; through the Ekman layer on the upper plate, 
which in turn feeds an axial shear layer (an interaction described in more detail 
later); and through a small radial flow within the slug itself, an effect which is 
nob a part of bhe M-S specification because of its inertial origin. 

One of the most interesting features of the whole flow around the sphere is the 
appearance of the boundary-layer fluid as it is ejected from the rear of the sphere 
(figure 5 ,  plate 1). This photograph, and many other like it taken under a, wide 
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range of circumstances, is a little misleading and must be interpreted with some 
care. The boundary layer is very thin and the layer of dye is distributed through 
a k i t e  portion of it from the sphere surface outwards. The dye particles furthest 
from the sphere are ejected into the outer flow first, as can be clearly seen in the 
photograph (figure 5 ,  plate 1). In  one revolution of the outer flow with respect 
to the sphere the particles travel an axial distance given by the pitch of the helix 
of dye.? Particles closer to the surface continue to move radially inwards until 
they too are ejected into the outer flow. The dye right at  the sphere surface never 
reaches the pole of the sphere, as the corresponding Ekman layer solution 
requires, and the terminal flow out of the layer is characterized by a central region 
of stagnant fluid which is rotating slightly slower than the rest of the ‘Taylor 
column’. Such behaviour is apparently typical of all layers of this convergent 
type1 whether they are Ekman layers, as in the present case, or non-linear 
boundary layers, as reported in Bretherton, Carrier & Longuet-Higgins (1966, 
p. 395). Such layers present a variety of configurations depending on the 
nature of the outer flow (e.g. solid body-like rotation or vortex-like motion) 
and the fluid dynamic parameters (e.g. Taylor number, ratio of surface rotation 
speed to outer flow rotation speed), and will be reported on more fully in the 
future. 

All of the cases suggest a situation for the present case like that shown dia- 
grammatically in figure 9. Detailed features in other cases may be different, e.g. 
the vortex breakdown region may be many boundary-layer thicknesses in radius, 
or the stagnant region may in fact be strongly recirculating, etc.; but the general 
features and the qualitative description are essentially the same. Under the action 
of the external pressure gradient boundary-layer fluid moves inward contin- 
uously being vertically ejected into the outer region, as in the convergent 
Ekman layer solution. As it approaches the centre instead of terminating 
smoothly, as the theoretical solution shows, the fluid is forced into a high velocity, 
rapidly swirling axial jet which breaks down from an initially ‘ supercritical ’ 
state to a final slightly oscillatory ‘subcritical ’ state. The increased axial velocity 
required to produce the initial supercritical flow is provided by the pressure field 
associated with the breakdown itself, which prevents the Ekman solution from 
occurring in its neighbourhood and diverts the fluid, that would have been 
expelled, into the central jet (cf. similar but more dramatic interaction between 
a tornado and the ground (Maxworthy 1967)). Why the flow prefers this condition 
to the smooth Ekman solution can only be answered from a solution of the un- 
steady problem since the steady Ekman solution allows no such breakdown. 
Work in related, unsteady boundary-layer flows shows that the initial solid 
body flow is changed by the inward motion of a vertical sheet of fluid across 
which the angular velocity changes rapidly and within which there is a large, 

t The ratio of the pitch of the helix of dye to its circumference is a measure of the ratio 
of the axial velocity to the circumferential velocity in the Taylor column and can be used 
to find one of these velocities once the other is known. 

$ A convergent layer is here defined as one in which the boundary-layer fluid is moving 
inwards towards the centre of rotation and the outer flow has an axial velocity directed 
away from the layer. 
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vertical velocity (cf. Wedemeyer’s (1964) solution for the related boundary- 
layer case). An annular vortex jump occurs where the large, vertical velocity 
leaves the boundary layer and as this converges onto the central axis it tends 
to the steady-state solution already described. In  some boundary-layer flows it 
has been observed that this annular breakdown can remain stationary many 
boundary-layer thicknesses from the central axis, with the fluid outside rotating 
rapidly and the fluid inside not rotating at all ! 

Tangential velocity profile Axial velocity profile 

Width of vortex jump region 

FIGURE 9. Diagrammatic view of the flow associated with a convergent Ekman layer. 

In  the present case, of course, this whole difficulty takes place over such a 
small central area that it has very little effect on such a gross parameter as the 
drag of the sphere, but it, nevertheless, points out an important deviation from 
the previously well thought of, but experimentally unverified, Ekman solution. 
Once this fluid has left the rear of the sphere, its travels are not yet complete 
because it also helps t o  feed the vertical shear layers, as shown in figure 4. 

The interactions occurring in the end wall layers must also be discussed separa- 
tely because one, the upper, is absorbing fluid while the other is ejecting fluid and 
displays all of the difficulties described previously for the layer behind the sphere. 
Thus fluid comes from above through the surrounding shear layer, converges 
towards the centre and goes through the same breakdown as the rear sphere 
layer. The interaction at  the upper end plate is apparently well behaved with 
fluid being absorbed uniformly into the Ekman layer and then re-emitted into 
the surrounding shear layers. There is a vague but virtually unprovable indica- 
tion that the fluid being ejected into this shear layer also goes through an annular 
vortex jump, but the motions are so slow and difficult to observe that this must 
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remain a subject for further study (figure 6a ,  plate 2). Also in the category of 
future observations is the whole problem of instability of the vertical shear 
layers and eventually of the interior of the Taylor column itself. A few observa- 
tions suggest that the condition to the right of the break in the curve of figure 3 
occurs when the whole interior of the Taylor column becomes unstable (figure 
8a, plate 4). To the left only the outermost region of the vertical shear layers is 
unstable, but insufficient evidence is available to make a more satisfactory 
statement. The instability is undoubtedly of the same type as that observed by 
Hide & Titman (1967) in the related problems of differential rotation of concen- 
tric spheres and coaxial disks. 

When the upper surface is free, the previous discussion concerning the Ekman 
layers around the sphere and at  the lower, solid wall are qualitatively unchanged. 
However, for the range of these experiments the region between the sphere and 
the free surface contains a feature which was only slightly in evidence in the 
previous case. A column of dye injected along the axis instead of being absorbed 
entirely by the Ekman layer now becomes shortened and fattened by the flow 
until it fills the Taylor column (figures 7 a ,  b,  plate 3).  There is a large radial flow 
within the whole column which is only explainable by allowing the existence of 
considerable inertial effects to replace the missing Ekman layer, and the radial 
flow short circuits much of the flow past the Ekman layer on the sphere (figures 
7 a ,  b,  plate 3).  This partially explains why this case has only a slightly increased 
drag over the previous case and is far from the theoretical asymptote, especially 
at large Reynolds numbers. As already noted, a similar effect occurs when the 
sphere rises towards a solid wall and accounts for part of the difference between 
the measured drag and the results of the simplified theory with negligible inertial 
effects. 

Quantitative velocity measurements 
Using the ‘indicator’ technique described by Baker (1966) and the apparatus 

shown in figure l b ,  it was possible to measure the azimuthal velocity profiles 
in the two wakes. All axial velocities are so much smaller, that it is impossible 
to measure their magnitude and we use the technique only to determine their 
direction at  various radial locations. Figure 8 b, plate 4, shows such a profile for 
the forward slug with parameter values, R = 14, T = 4200, one revolution of the 
tank after the dye was initially created. Solid body rotation with angular velo- 
city o exists at  the centre; this was measured and used in the construction of 
figure 10. Theoretically this central rotation rate is proportional to RT-$Q, 
and the theoretical asymptote on the ordinate of figure 10 is +. Results are 
plotted only versus R, because the scatter is too great to try to make a further 
reduction as we could with the drag results. The fore-and-aft asymmetry of the 
flow is marked and is only reduced as inertia effects become small. This asym- 
metry also shows up in measurements of the wake width, the forward wake being 
slightly wider than the rearward one, in confirmation of the dye studies and the 
reconstruction of figure 4. Observations of the shape of the velocity profiles in 
the shear layers themselves are obscured by sphere curvature effects as discussed 
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in M-S, so that the inner transition from slug solid body rotation is very slow. 
The outer transition from shear layer to the solid body rotation rate of the tank 
is very rapid and is probably more typical of the changes that take place in such 
layers. Experiments using a moving disk, with no body curvature effects, should 
be more enlightening than the present results on this point. 
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Conclusions 
Can be summarized as follows. 
(i) We have determined the motion of a sphere as it rises through a rotating 

tank of water of finite length; by measuring its velocity of rise for various dia- 
meters, buoyancy forces and rotation rates and calculating the drag coefficient; 
by observing the motion of dye introduced into various locations; and by measur- 
ing the azimuthal velocity profiles in the fore and aft slugs. 

(ii) The drag coefficient measurements show that the results of Moore & Saff- 
man (1968) are approached when inertia forces everywhere in the flow are very 
much smaller than both viscous and Coriolis forces. 

(iii) Dye motion studies have indicated several locations where inertia effects 
are important: in the shear layers as they thin and support an annular vortex 
breakdown in the neighbourhood of the sphere equator; in the forward slug 
within which there is a radial flow of inertial origin; in the boundary-layer flow 
being ejected into the rearward slug a& both the sphere and the lower solid 
boundary. 

(iv) Both dye studies and azimuthal velocity measurements show a marked 
fore and aft asymmetry in the flow which is a further manifestation of these 
finite inertial effects in the range of parameters studied. 
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(v) Tests with an upper free surface indicate a drag coefficient which is larger 
than that found with a solid upper surface at  the same values of all the para- 
meters. 

Many rewarding discussions with Drs D. W. Moore and P. G. Saffman are 
gratefully acknowledged. D. E. Griffith constructed the apparatus and suggested 
many subtle improvements; without his aid the results would have been in- 
finitely harder to obtain. 

This paper presents the results of one phase of research carried out at  the Jet  
Propulsion Laboratory, California Institute of Technology, under Contract 
no. NAS7-100, sponsored by the National Aeronautics and Space Administra- 
tion. 
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FIGURE 5 .  Flow in the Ekman layers around the sphere. T = 15,900; R = 28. Dye intro- 
duced into a finite portion of the Ekman layer on the upper hemisphere travels around to 
the rear hemisphere whore it is ejected in the form of a helix. Note that dye particles never 
reach the pole of the sphere as required by the corresponding Ekman boundary-laycr 
solution. 
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Jownnl  of Fluid Jlechanics, Vol. 31, p w t  4 Plate 2 

FIGURE F(a) and ( b ) .  The changc in the shape of a, dye coliirnn introduced ahead of a 
rising sphcro. Note t.he dye flow, away from t,hc upper wall in (a) ,  and tho change in dia- 
metar of't,he colrirnn of clye. I' = 12,000; R = 9.5. ( c ) .  Showing a t,hinning of the shear layer 
and the clear division between fluid in this layer and that within the central region. 
I' = 8400; R = 15.5. 
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FIGURE 7 (a)  and ( b ) .  Showing radial flow and absence of shear layers in forward slug with 
an iippcr free surface. Notc evidence of reversed flow in the roar slug. 1’ = 17,900; R = 4.4. 
( c ) .  Undular vortex breakdown in the annular shear layer as it accelerates past the sphcre 
equator. h-ote wavelike motions in the shear layers. T = 5900; R = 33.2. Topmost image 
is a rpflcxion from the uppcr wall, dark line is the dye injection tube. 
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FIGURE 8 ( ( I . )  Azimuthal instability of the rear slug when R/T 4 exceeds lmity, actually 1.3. 
( b ) .  Su irl velocity profile in forward slug, one diameter ahead of the sphere, one revolution 
of' th r  tank after the dye line wits formed. 2' = 4200; R = 14 Inset shows geometric con- 
figuration for this photograph. 
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